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Abstract 

The objective is to analyze vocal dysperiodicities 
in connected speech produced by dysphonic 
speakers. The analysis involves a variogram-based 
method that enables tracking instantaneous vocal 
dysperiodicities. The dysperiodicity trace is 
summarized by means of the signal-to-dysperiodicity 
ratio, which has been shown to correlate strongly 
with the perceived degree of hoarseness of the 
speaker. Previously, this method has been evaluated 
on small corpora only. In this article analyses have 
been carried out on a corpus comprising over 700 
speaker, which is split into normophonic and 
pathological speakers. First, statistically significant 
differences have been found between the averages of 
the full-band signal-to-dysperiodicity ratios of the 
normal and disordered utterances. Second, multi-
band signal-to-dysperiodicity ratios have been 
submitted to principal component analysis. Results 
show that the first two principal components are 
interpretable in terms of the degree of dysphonia and 
the spectral slope respectively. The clinical 
relevance of the principal components has been 
confirmed by linear discriminant analysis. 

1  Introduction 

Acoustic analysis of speech is non-invasive and 
enables clinicians to monitor and express 
numerically the degree of hoarseness of a speaker’s 
voice. 

Many voice disorders cause voiced speech to 
deviate from strict periodicity. Dysperiodicities may 
be caused by additive noise owing to turbulent 
airflow and modulation noise owing to extrinsic 
perturbations of the glottal excitation signal. 
Dysperiodicities may also be due to an intrinsically 
irregular dynamics of the vocal folds or involuntary 
transients between dynamic regimes.  

Many acoustic features that have been used to 
assess vocal function reflect the deviation of the 
speech waveform from perfect periodicity. Most of 
them have been obtained for steady fragments of 
sustained vowels, owing to technical feasibility 
rather than clinical relevance [1]. However, 
clinicians consider connected speech to be more 
informative than sustained vowels.  

The generalized variogram method enables 
tracking cycle-to-cycle dysperiodicities (whatever 
their cause) in any speech sound produced by any 
speaker, because it is not based on the assumptions 
that the signal is locally periodic or that the average 
period length can be known in advance [2]. The 
signal-to-dysperiodicity ratio (SDR) that summarizes 
the dysperiodicities has been shown to correlate 
strongly with the degree of perceived hoarseness.  

Previously, the variogram-based method has been 
tested on small corpora. In this presentation, the 
signal-to-dysperiodicity ratios are obtained for a 
corpus of sustained vowels and connected speech 
fragments produced by over 700 speakers. This 
enables performing multi-band frequency analysis 
without risking over-fitting. The objectives of the 
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experiments involve the following: a) test whether 
the averages of the full-band signal-to-dysperiodicity 
ratios are significantly different for normophonic and 
pathological speakers; b) investigate, via a principal 
component analysis, signal-to-dysperiodicity ratios 
obtained in different frequency bands. The clinical 
relevance of the principal components has been 
tested via a linear discriminant analysis of speech 
tokens known to be “normal” or “pathological”.  

2  Methods 

2.1  Extraction of vocal dysperiodicities 

The variogram method is based on the observation 
that when one reports in a 2-dimensional graph 
samples of a noise-free periodic signal on the 
horizontal axis and samples that are identically 
positioned in an adjacent period on the vertical axis, 
then all sample pairs (x,y) are located on the bisector 
of the graph. In a noisy signal, pairs (x,y) remain in 
the vicinity of the bisector. The cumulated distance 
between pairs and bisector over an analysis frame is 
a measure of the total signal noise in that frame and 
the individual distances between each pair and the 
bisector are sample-by-sample estimates of the noise 
(whatever its cause). 

In practice, a sliding rectangular analysis frame of 
2.5 ms is used and auxiliary frames are time-shifted 
to the left and right to minimize the cumulated 
distance of all inter-frame sample pairs. This inter-
frame distance calculated for all inter-frame shifts is 
known as the variogram, from which the method 
takes its name. The positioning of analysis frames to 
the left and right of the main analysis frame avoids 
comparing signal fragments that do not belong to the 
same phonetic segment because the minimum of the 
left and right distances is retained as a measure of 
vocal noise [2].  

Before the calculation of the individual and 
cumulated distances, the within-frame signal 
fragments are energy-normalized. Energy-
normalization enables compensating for slow 
amplitude variations.  

To obtain vocal dysperiodicity estimates for a 
complete signal, the main frame is shifted without 
overlap or gap and the analysis is repeated as often as 
necessary. 

2.2  Segmental signal-to-dysperiodicity ratio 

 The vocal noise is summarized by means of 
segmental signal-to-dysperiodicity ratios. Speech 
signal x(n) as well as the corresponding 
dysperiodicity trace e(n) are divided into intervals of 
length Ls equal to 5 ms [2]. Then, a local signal-to-
dysperiodicity ratio (1) is computed for each interval.  
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 The segmental signal-to-dysperiodicity ratio 
SDRSEG is obtained by averaging the SDRlocs over 
all intervals.  

2.3  Multi-band analyses 

 For each utterance, the speech signal as well as 
the corresponding dysperiodicity trace are filtered by 
means of four mel-spaced linear-phase filters and 
segmental signal-to-dysperiodicity ratios (1) are 
computed for each band. The ranges of the four mel 
bands (B1 – B4) are (0 – 800 mel), (800 – 1600 mel), 
(1600 – 2400 mel) and beyond. They correspond to 
the frequency bands (0 – 724 Hz), (724 – 2195 Hz), 
(2195 – 5188 Hz) and beyond.  

2.4  Corpus 

 The corpus has been the Kay Elemetrics Voice 
Disorder Database developed by the Massachusetts 
Eye and Ear Infirmary Voice and Speech Labs. This 
corpus comprises 53 normal and over 650 disordered 
utterances. The acoustic tokens are sustained 
phonations of vowel [a] (3 - 4 s long) and the first 12 
seconds of the Rainbow Passage spoken by 
normophonic subjects and patients with organic, 
neurological, traumatic, and psychogenic voice 
disorders at different stages (from early to fully 
developed). No perceptual evaluation of the tokens is 
available. 

2.5  Statistical analyses 

 Firstly, hypothesis tests have been performed to 
check whether the averages of the full-band 
segmental signal-to-dysperiodicity ratios are 
significantly different for normophonic and 
dysphonic speakers. Secondly, analyses of variance 
have been carried out to compare the averages of the 
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full-band segmental signal-to-dysperiodicity ratios 
between different categories of pathologies. 

2.6  Principal component and linear discriminant 

analyses 

 A principal component analysis has been carried 
out on 3 segmental signal-to-dysperiodicity ratios 
(for the three lowest bands) of the corpus comprising 
normal and disordered utterances. The SDRSEG cues 
have been z-normalized prior to analysis.  
 A linear discriminant analysis has been performed 
to assess numerically the clinical relevance of the 
first two principal components.  

3  Results 

3.1  Statistical analyses 

 Statistically significant differences have been 
observed between the averages of the full-band 
segmental signal-to-dysperiodicity ratios of the 
normal and disordered utterances for sustained [a] 
(two-tailed t-test, t=24.43, p<0.001) and the 12-
second Rainbow Passage (two-tailed t-test, t=13.78, 
p<0.001). With regard to the comparison of different 
categories of pathologies via the analysis of variance, 
statistically significant differences have been 
observed between several pathology categories. 
Tukey tests have been used as post-hoc multiple 
comparison tests [3]. With regard to vowel [a], one 
observes that the vocal nodule category statistically 
significantly differs from the severe ventricular 
compression and bowing pathology categories. 
However, for the Rainbow Passage, Tukey tests have 
not detected any statistically significant differences 
between pathology categories. 

3.2  Principal component and linear discriminant 

analyses  

 Table 1 shows, for the Rainbow Passage, the 
results of the principal component analysis applied to 
the SDRSEGs obtained for the first three frequency 
bands. Eigenvalues as well as cumulative variances 
are shown to the left. Coefficients of the linear 
combinations, which transform the (z-normalized) 
SDRSEGs into principal components, are shown to 
the right. 

 One observes that more than ninety percent of the 
total variance are explained by the first two principal 
components PC1 and PC2, which are interpreted as 
the negative of the average of the z-normalized 
SDRSEGs and the difference between the z-
normalized SDRSEGs in bands 3 and 1, respectively.  

Table 1: Results of the principal component analysis 
applied to the segmental signal-to-dysperiodicity 
ratios (SDRSEG) obtained for the first three frequency 
bands of the connected speech corpus (12-second of 
the Rainbow Passage).

Coefficients (for the 

different bands) PC
Eigen-

values 

Cumulative 

variance 
1 2 3 

1 2.00 66.8 % -0.56 -0.66 -0.50 
2 0.79 92.9 % -0.64 -0.05 0.77 
3 0.21 100.0% -0.53 0.75 -0.40 

When one reports the second versus the first 
principal component in a 2D graph, normal and 
disordered utterances tend to cluster separately 
(Figure 1). A principal component analysis of 
SDRSEGs of sustained [a] give similar results. 
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Figure 1: Principal component representation of 
the SDRSEGs of the Rainbow Passage corpus.

 A linear discriminant analysis has been carried 
out to assess numerically the clinical relevance of the 
first two principal components. For the Rainbow 
Passage, one observes that out of 661 disordered 
tokens, 596 have been correctly classified as 
disordered and 65 have been misclassified as normal. 
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Similarly, out of 53 normal tokens, 46 have been 
correctly classified as normal and 7 have been 
misclassified as disordered. Thus, the overall 
classification accuracy is 89.9%. Here, linear 
discrimination analysis is carried out to confirm the 
relevance of the principal component analysis. One 
does not suggest detecting dysphonic speakers 
automatically. 

4  Discussion and conclusion  

 Principal component analyses have been carried 
out on the multi-band SDRSEG cues. One observes 
separate clustering of disordered and clean tokens 
(Figure 1). The first principal component indeed 
corresponds to the negative of the average z-
normalized signal-to-dysperiodicity ratios in the three 
mel-frequency bands (Table 1). Clean voices are 
therefore assigned to the left and severely disordered 
voices to the right of the horizontal axis (Figure 1). 
 The crescent shape of the graph can be interpreted 
in terms of the spectral slopes of the speech spectra. 
To illustrate, Figure 2 shows two vowel [a] spectra 
that correspond to tokens with PC1<0 and PC2<0 as 
well as PC1<0 and PC2>0. When comparing the 
spectrum in Figure 2.a (PC2>0) to the one in Figure 
2.b (PC2<0), one sees that in spectrum Figure 2.b the 
harmonics decrease more rapidly with frequency than 
in Figure 2.a. This suggests that the second principal 
component depends on the spectral slope. Indeed, the 
spectral slopes for PC2<0 are steeper (the slope is 
larger in absolute value) than for PC2>0. This 
observation agrees with the interpretation of 
principal component 2 as a difference between the 
SDRSEGs in frequency bands 3 and 1 (Table 1).  
 The spectra reported in Figure 2 correspond to 
normal voices. Indeed, their harmonic structure is 
well defined and the dB level of the speech spectrum 
is higher than the dB level of the dysperiodicity 
spectrum. This agrees with the interpretation of the 
first principal component as an average that reports 
the overall degree of dysperiodicities.
 In addition, an overall classification accuracy of 
89.9% has been obtained via linear discriminant 
analysis based on the first two principal components. 
This suggests that principal components combine 
dysperiodicity cues in a clinically meaningful way.
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Figure 2: Speech and dysperiodicity signals 
spectra. In black: Speech spectrum, in grey: 
dysperiodicity spectrum.
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