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Abstract

As part of ongoing work to integrate an articu-
latory synthesizer into a modular TTS platform, a
method is presented which allows gestural timings
to be generated automatically from EMA data. Fur-
ther work is outlined which will adapt the vocal tract
model and phoneset to English using new articula-
tory data, and use statistical trajectory models.

1 Background

Articulatory speech synthesis presents a phonet-

ically intuitive alternative to other synthesis tech-

niques. Unlike approaches such as HMM-based syn-

thesis, there is a clear separation of source (glottis)

and filter (vocal tract), avoiding many of the prob-

lems of estimating the vocal tract transfer function.

The articulatory synthesizer VocalTractLab1

(VTL) [1, 3] uses a configurable, 3-D geometric

model of the human vocal tract to synthesize

high-quality speech. It is controlled by a gestural

score, akin to those used in articulatory phonology

[5], containing several “autosegmental” tiers on

which gestures are arranged sequentially over time

(Figure 1). These gestures determine the movement

of a set of control points embedded in the vocal

tract model, which in turn control its shape.

VTL does not include any text-to-speech (TTS)

capabilities, and synthesis is controlled through the

gestural score interface. This presents the user with

the responsibility of hand-crafting suitable gestural

scores, a significant task requiring expert knowledge

and patience.

The main challenge in creating the gestural score

lies in determining the timing of the gestures on

each tier. Using the durations of acoustic segments

1http://www.vocaltractlab.de

is not a satisfactory solution, since these segments

are mostly the result of articulatory movements that

begin earlier, but how much earlier is difficult to pre-

dict, and is influenced by phonetic context.

An earlier attempt at combining VTL with the

TTS platform BOSS2 produced intellegible, but not

quite natural-sounding, results [4]. This prototype

used hand-written “phasing rules” [5] to convert

the segmental durations predicted by the durational

component of BOSS to gestural timings.

A different approach is presented in the following

sections and uses human articulatory data to gener-

ate gestural timings automatically.

2 Data-driven articulatory resynthesis

The fundamental assumption is that gestural

scores based on real human speech will result in a

higher degree of naturalness in synthesis. The task,

therefore, is to generate discrete gestural timings

from real speech.

It is possible to capture the motion of points on

the surfaces of the 3-D vocal tract model, an analysis

similar to Electromagnetic Articulography (EMA).

Comparing the resulting “virtual” EMA (VEMA)

trajectories to actual EMA data is very straightfor-

ward and much faster than using VTL to synthesize

audio and recovering gestural timings from the re-

sult by measuring distances in the acoustic domain,

apart from problems arising from the nonlinear rela-

tionship between articulation and acoustics.

The procedure for each utterance in a corpus of

EMA data is therefore to generate a gestural score

for which the VEMA trajectories synthesized by

VTL closely match the original EMA data. The set

of gestural scores obtained using this analysis-by-

synthesis method can then be used to train statistical

2http://www.ikp.uni-bonn.de/boss
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Figure 1: Synthesis result and gestural score for
the utterance Musik ��������	. The ��	 is produced
with bilabial occlusion (the b gesture) and lowered
VELum. The s and g gestures, combined with the
GLOttal gestures, produce ��	 and ��	, respectively.

models to predict gestural scores for unseen utter-

ances.

2.1 Articulatory data

To test the approach outlined above, an exist-

ing corpus of 271 two-second nonsense utterances

of repetitive CV syllables was used [6]. It con-

tains EMA data of a female native speaker of Ger-

man, recorded on a Carstens AG100 Articulograph

at 200 Hz sample rate, with coils attached to the up-

per and lower lip, jaw, and tongue tip, blade, and

dorsum, as well as simultaneous audio (Figure 2).

2.2 Brute force baseline

As a proof of concept, one utterance ([zazazaza])

was selected from the EMA corpus, and all possible

gestural scores for this simple utterance were gener-

ated. To make this a finite set, the 2 s duration was

split into discrete frames, with gestural boundaries

occurring only at frame boundaries.

The number of possible gestural scores nf,g for

f frames and g gestures is given by the recursive

function

nf,g =

{∑f−g+1
x=1 nf−x,g−1 for g > 1

1 else

For the sample utterance, the number of con-

sonantal gestures, padded with “silent”, as well as

leading and trailing “neutral” gestures (correspond-

ing to the speaker’s rest position), is 12 (Figure 3).

At 10 frames per second (fps), there are 20 frames,

and therefore 19 possible times at which the 11 ges-

Figure 2: Scatterplot of all datapoints in the EMA
corpus, and those of [z] segments only. Note the dis-
tribution of datapoints for ttip [z] and jaw [z].
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Figure 3: Finite state automaton for the consonantal
gestures of the utterance [zazazaza].

tural boundaries can be positioned. This leads to

75,582 distinct gestural scores.3

For each of these resulting gestural scores, the

VEMA trajectories were synthesized4 and the root-

mean-square error computed on the normalized tra-

jectories, weighted by relevance for the phone rep-

resented by the current gesture. The relevance was

determined by the ratio of phone-specific to over-

all EMA datapoints (Figure 2). While this already

works well, integrating the approach taken by [7] is

expected to further improve the results.

The gestural timings and tongue tip height trajec-

tory of the optimal gestural score are shown in Fig-

ure 4.

2.3 Viterbi search

While the results of the brute force approach are

promising, the vast amount of CPU time it requires

renders it utterly impractical. Therefore, a Dynamic

Programming algorithm was implemented to gener-

ate the gestural timings more efficiently. The conso-

nantal gestures required for the sample utterance can

be represented as Finite State Automaton (Figure 3),

which can be expanded into a transition network.

Finding the optimal path through the network

3The number of permutations of gestural timings grows ex-
ponentially with the framerate; e.g. 15 fps yields 34,597,290
gestural scores, 20 fps yields 1,676,056,044, etc.

4VEMA synthesis time was ∼35 min. on 112 2.66 GHz
CPUs in parallel.
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Figure 4: Original and resynthesized ttipY trajecto-
ries for [zazazaza] at 20 fps. The dashed and solid
lines represent frame and gesture boundaries.

given an error metric based on the EMA and VEMA

data is essentially a forced alignment problem,

solved by using a Viterbi search.5 This returns the

number of frames in each gesture, and hence, the

gestural timings.6 Both the error metric used as the

cost function and the search result were the same as

for the brute-force search (Figure 4).

2.4 F0 gestures

The pitch contour from the original utterance was

resynthesized by extracting, smoothing, and interpo-

lating the original pitch using Praat.7 The inflection

point times of the resulting contour were used as

F0 gesture boundaries, while the gesture parameters

were derived from the slope of the tangent lines at

these points.

The resulting F0 trajectory closely matches the

original smoothed, interpolated pitch contour. The

effort parameter was kept constant, and while an op-

timization of this parameter would result in an even

closer match between the original and resynthesized

contours, this was given a low priority.8

2.5 Gestural score assembly

Using the timing of the consonantal and F0 ges-

tures, the remaining tiers in the gestural score were

populated with gestures in a few simple steps:

Vowel gestures were synchronized with the con-

sonantal gestures based on syllable structure.

5VTL’s gestural model is a nonanticipative system.
6Search time (20 fps) was ∼5 min. on one 1.86 GHz CPU.
7http://www.praat.org
8The optimization function has no analytic solution, and the

required iterative approach was (at this point) deemed too ex-
pensive for the modest improvement expected.
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Figure 5: Synthesis result and gestural score gener-
ated from EMA and F0 data for the resynthesis of
[zazazaza].

Glottal gestures were derived from consonantal

and vowel gestures. Their values were set depending

on whether they occurred during a vowel, fricative,

or silence.

Velic gestures were synchronized with consonan-

tal gestures in the same way as glottal gestures.

Pulmonic gestures were derived both from oral

and F0 gestures.

The resulting gestural score is shown in Figure 5.

3 Further work

This study forms part of ongoing work to adapt

VTL to an English speaker and to allow it to be used

as the synthesis engine in a modular TTS system.

Several aspects of this are outlined here.

3.1 Unified articulatory datasets

The approach presented in this paper uses EMA

data from a female speaker to model the dynamics

of speech and map them to VTL. However, the vocal

tract configuration and phoneset available with VTL

are based on vocal tract MRI data of a male speaker

of German [2]. The speakers in these two datasets

obviously have different vocal tracts, but no attempt

was made to normalize for these differences.

A new articulatory database is currently being

prepared for publication, and contains a variety of

instrumentation techniques to provide articulatory

data for a single 34-year old male native speaker

of English. This data includes a large corpus (1,263

phonetically balanced English utterances) of 3-D

EMA data recorded on a Carstens AG500 (coils

on upper and lower lip, three along tongue, and on

velum)9 with simultaneous audio, as well as vocal

9Thanks to Phil Hoole et al. at IPS Munich
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Figure 6: Midsagittal slice of volumetric MR images
for [��]; 3-D bust prototype with digital dental cast.

tract MRI of sustained English phones and dynamic

VCV transitions.10 Samples of the MRI data are

shown in Figure 6.

These corpora will be used to build a new “voice”

for VTL, consisting of vocal tract anatomy, phone-

set, and a set of gestural scores resynthesizing the

EMA data using the method described in the pre-

vious section. It is expected that using the same

speaker for all of these components will further im-

prove the results produced by data-driven synthe-

sizer control.

Additionally, configuring VTL to an English

speaker will provide a phoneset suitable for the syn-

thesis of English utterances, which is currently im-

possible without heavy modification of VTL’s origi-

nal German phoneset.

3.2 TTS integration

The gestural timings obtained through the resyn-

thesis method described here could be used as train-

ing data for statistical models, such as Classification

and Regression Trees (CARTs) or HMM-based syn-

thesis (HTS).11 Controlling VTL with these models

would allow the synthesis of unseen utterances.

In this way, VTL could be used as the wave-

form synthesis engine at the back-end of a modular

TTS platform such as Festival12 or MARY13, both

of which already contain all of the required compo-

nents to convert orthographic input into sequences

of phones and predict the accompanying prosodic

information. Additionally, the architecture of both

of these TTS platforms allows the use of CARTs or

HTS synthesis techniques.

10Thanks to Ian Marshall et al. at SBIRC Edinburgh
11http://hts.sp.nitech.ac.jp/
12http://www.cstr.ed.ac.uk/projects/

festival/
13http://mary.dfki.de/

4 Conclusion

We have introduced a method to automatically

generate gestural timings from articulatory data, and

presented intermediate results demonstrating both

its practicality and satisfactory results. We are now

well-placed to fit the vocal tract model to single-

speaker articulatory data and eventually bridge the

gap between the articulatory synthesizer and TTS

applications.
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